I'T CURRICULUM

Alan Fekete (Uni of Sydney) representing Lin
Padgham and CORE

Summary

The term “Computer Science” should mean something
Degree title, or name of major

The definition of “Computer Science” graduate should
follow ACM/IEEE approach

See CC2013 (latest instantiation)

At https://www.acm.org/education/curricula-recommendations

CORE does not constrain what unis might offer as other
types of computing education

But we do believe that the CS variety has real value, and should be
available widely

Computer Science (ACM description)

Computer science spans a wide range, from its theoretical and algorithmic
foundations to cutting-edge developments in robotics, computer vision, intelligent
systems, bioinformatics, and other exciting areas.

We can think of the work of computer scientists as falling into three categories.
They design and implement software. Computer scientists take on challenging programming
jobs. They also supervise other programmers, keeping them aware of new approaches.

They devise new ways to use computers. Progress in the CS areas of networking, database,
and human-computer-interface enabled the development of the World Wide Web. Now CS
researchers are working with scientists from other fields to make robots become practical and
intelligent aides, to use databases to create new knowledge, and to use computers to help
decipher the secrets of our DNA.

They develop effective ways to solve computing problems. For example, computer scientists
develop the best possible ways to store information in databases, send data over networks, and
display complex images. Their theoretical background allows them to determine the best
performance possible, and their study of algorithms helps them to develop new approaches that
provide better performance.

Computer science spans the range from theory through programming. Curricula
that reflect this breadth are sometimes criticized for failing to prepare graduates
for specific jobs. While other disciplines may produce graduates with more
immediately relevant job-related skills, computer science offers a comprehensive
foundation that permits graduates to adapt to new technologies and new idea

From CC2005 Overview Report

B
Computer SClence (ACM dlagram)

mﬂ'miz § §§3. 5555;5353 ;55; .;55.5355; ;35; 553; SSREEREE 5551

s s D

B
Compare with IS (ACM diagram)

Organizational Issues
& Information Systems

Application
Technologies

Software Methods
and Technologies

Systems
Infrastructure

Computer Hardware
and Architecture

Theory DEVELOPMENT Application
Innovation Configuration

B
Compare W|th SE (ACM dlagram)

CORE accepts ACM/IEEE CS curriculum

Large community-wide effort to define this
Including international consultation, industry advice

Leaders in 2013: Mehram Sahami (Stanford), Steve Roach (Exelis
Inc)

Kept fairly uptodate (revisions CS2001, CS2008, CS2013)

Suited to major in US liberal-arts bachelors degree
4 year degree, but also has a substantial breadth requirement

So the space for the major (about 8-10 semester subjects) is
reasonable as minimum in Australian 3-year Bachelors

It is not feasible for Australia to deviate much from
international understanding, nor worth the huge effort to
develop our own documents

Structure of ACM CS2013

Content defined in knowledge areas (KAs)

KAs do not need to match with subjects in curriculum
A subject may mix parts of several KAs
One KA may be spread among several subjects

In each knowledge area, some topics are

“Tier-1” (required for any graduate)
Others are “Tier-2” (80% of these must be covered)

Others are elective (coverage at discretion of the program, and/or
choice of the student)

Outcomes defined as Familiarity, Usage, or Assessment
(similar to simplified Bloom taxonomy)

L
Lecture-hours (start of table)

(1 semester subiect = 3 credit hours)

CS2013
Knowledge Area Tierl , Tier2
AL-Algorithms and Complexity 19 9
AR-Architecture and Organization 0 16
CN-Computational Science =~ 1| 0
DS-Discrete Structures 37 | 4
GV-Graphics and Visualization =~ > |1
HCL-Human-Computer Interaction 4 | 4
IAS-Information Assurance and Security | 3 6
IM-Information Management 1 9
IS-Intelligent Systems | 0 | 10

Lecture-hours (rest of table)

NC-Networking and Communication 3 07
OS-Operating Systems 4 11
PBD-Platform-based Development)
PD-Parallel and Distributed Computing s | 10
PL-Programming Languages g | 20

nn

nnnnnnnnnnnnnnnnnnnnnnnnn

SF-Systems Fundamentals 18 9
SP-Social Issues and Professional Practice 11 5
Total Core Hours 165 ' 143

Example from AL/Fundamental Data
Structures and Algorithms

[Core-Tierl]

Simple numerical algorithms, such as computing the average of a list of numbers, finding the min, max,
and mode in a list, approximating the square root of a number, or finding the greatest common divisor
Sequential and binary search algonithms
Worst case quadratic sorting algorithms (selection, insertion)
Worst or average case O(N log N) sorting algonithms (quicksort, heapsort, mergesort)
Hash tables, including strategies for avoiding and resolving collisions
Binary search trees

o Common operations on binary search trees such as select min max, insert, delete, iterate over tree
Graphs and graph algorithms

o Representations of graphs (e.g.. adjacency list, adjacency matnix)

o Depth- and breadth-first traversals

[Core-Tier2]

Heaps
Graphs and graph algorithms
o Shortest-path algorithms (Dijkstra’s and Floyd’s algonithms)
o Minimum spanning tree (Prim’s and Kruskal’s algorithms)
Pattern matching and string/text algorithms (e.g., substring matching. regular expression matching, longest
common subsequence algorithms)

Example continued

Learning Outcomes:

[Core-Tierl]

Implement basic numerical algorithms. [Usage]

Implement simple search algorithms and explain the differences in their time complexities. [Assessment]
Be able to implement common quadratic and O(N log N) sorting algonthms. [Usage]

Describe the implementation of hash tables, including collision avoidance and resolution. [Familiarity)
Discuss the runtime and memory efficiency of principal algorithms for sorting, searching, and hashing.
[Famuliarity]

Discuss factors other than computational efficiency that influence the choice of algorithms, such as
programming time, maintainability, and the use of application-specific patterns in the input data.
[Familiarity]

Explain how tree balance affects the efficiency of various binary search tree operations. [Familiarity]
Solve problems using fundamental graph algorithms, including depth-first and breadth-first search. [Usage]

MY W N e

o

o N

9. Demonstrate the ability to evaluate algorithms, to select from a range of possible options, to provide
justification for that selection, and to implement the algorithm in a particular context. [Assessment]

Graduate characteristics

Technical understanding of computer science
Familiarity with common themes and principles
Appreciation of the interplay between theory and practice
System-level perspective

Problem-solving skills

Project experience

Commitment to life-long learning

Commitment to professional responsibility
Communication and organizational skills
Awareness of the broad applicability of computing
Appreciation of domain-specific knowledge

Some of the challenges ina CS

curriculum

Not many jobs that actually call for “CS”; most graduates
work as software developers

How to balance teaching principles that last vs current job-needed
details
Eg relational algebra or Oracle 11 query syntax

Will employers be willing to wait during catchup training?
How can we teach skills in transfer and in connecting
theory and practice?
Mathematical background (or lack of it') among students

Shared subjects among CS and other computing degrees
Eg different approach to topics expected within one classroom

Attracting students to CS in competition with more
Immediately vocational degrees

