# Participation of women in higher education <br> Jo Coldwell-Neilson and Jenine Beekhuyzen 

## uCube data

- Shows large differences in female participation in FoE = 2 (IT)
- Range from ~9\% to 35\%+
- What are the differences?


## Proposed activities

- Investigate difference in female participation
- Literature review
- brief for RA - avoid clichéd "gender studies in IT"
- Search terms ... decision making by youth, informing career choices, gender and IT careers etc.
- Data collection from high and low achieving institutions w.r.t. \% female participation
- Data analysis
- Explore institutional data
- Explore context of high performing degree programs


## Influencing factors for career choice

- Parents - daughters/mothers, sons/fathers
- Connections between future careers and popular media
- Pride in IT proficiency noted in males, noticeably absent in females
- Girls rely on a degree of personal connection when considering possible future careers
- Two important predictors - student's beliefs re: competency and attributed value to subjects
- Perception of maths abilities aligned with computer ability
- More females in high math and verbal skills - have more choices and tend to choose non-STEM career paths


## Factors influencing ICT choices in schools

- 3 key influences
- Gender
- Time spent using computer at school
- Value students place on ICT subjects
- Value influenced by
- Curriculum and pedagogical planning (grouping and timetabling)
- Perceived teach expertise
- Dispositions towards use of IT in class


## University students

- Not yet capable of accurately defining value affordances of expected careers
- Choice of study programs often made after publication of university enter scores
- Gender diverse instructors
- Successful role models
- Training materials and style should not reinforce gendered stereotypes
- More females are attracted to creativity and multimedia
- Extrinsically motivated to learn programming equally as males
- Motivated to learn technical concepts in domains that are creative, fashionable and sociable


## Data collection

- 6 universities invited to participate, 4 provided data to date
- Breakdown of commencing students reported to uCube by degree, gender for domestic and international students for FoE $=2$
- (More data needed?)


## Distribution of females - high end (35\%)

A Master of Information Systems Extended ..... 5
11.00\% ..... 10
A Master of Computing ..... 217.00\%9
A Master of Information Systems ..... 46
20.00\% ..... 8
A Master of Information Technology (Professional)3021.00\%7
A Bachelor of Information Technology ..... 181
21.00\% ..... 6
A Master of Computing Technology ..... 5
23.00\% ..... 5
A Graduate Diploma of Information Technology1432.00\%4
A Bachelor of Business and Bachelor of Information Technology ..... 17
33.00\% ..... 3
A Bachelor of Commerce and Bachelor of Information Technology ..... 10
34.00\% ..... 2
A Master of Information Systems and Master of Project Management ..... 7
54.00\% ..... 1

## Distribution of females - low (10\%)

B Bachelor of Business Information Systems 22

B Master of Health Informatics

22
37.00\%

## Distribution of females - average (19\%)

C BAppSc/BGames\&InteractiveEnt

C MBusProcessMgt

C MInfTech(StudyAreaA)

8

32

233
22.00\% 3
30.00\% 2
30.00\% 1

## Distribution of females - low (~12\%)

D Bachelor of Arts and Bachelor of Computer Science
2 29.00\%
D Bachelor of Science and Bachelor of Computer Science
4 29.00\%
Bachelor of Computer and Mathematical Sciences and
D Bachelor of Economics
Bachelor of Computer and Mathematical Sciences and
D Bachelor of Commerce
7 44.00\%

## ... Low end

D Master of Information Technology - Coursework
11 22.00\% 7

D Master of Computer Science
$15 \quad 23.00 \% 6$

D Bachelor of Computer Science and Bachelor of Commerce
$10 \quad 24.00 \% 5$

## Final thoughts

- Reconsider desire to rationalise double Masters programs
- Are we targeting the right demographic with our intervention strategies?
- Do we need to redirect some (all?) our efforts?
...??

